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(57) ABSTRACT

A method, computer system, and computer memory medium
optimizing a transductive model Mx suitable for use in data
analysis and for determining a prognostic outcome specific to
a particular subject are disclosed. The particular subject may
be represented by an input vector, which includes a number of
variable features in relation to a scenario of interest. Samples
from a global dataset D also having the same features relating
to the scenario and for which the outcome is known are
determined. In an embodiment, a subset of the variable fea-
tures within a neighborhood formed by the samples are
ranked in order of importance to an outcome. The prognostic
transductive model is then created based, at least in part, on
the subset, the ranking, and the neighborhood. The subset and
the neighborhood are then optimized until the accuracy of the
transductive model is maximized.
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DATA ANALYSIS AND PREDICTIVE
SYSTEMS AND RELATED
METHODOLOGIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This applicationis a continuation application of U.S. appli-
cation Ser. No. 13/088,306, filed Apr. 15, 2011, which is a
continuation application, and claims the benefit under 35
U.S.C. §§120and 365 of PCT Application No. PCT/NZ2009/
000222, filed on Oct. 15, 2009, which are hereby incorpo-
rated by reference. PCT/NZ2009/000222 also claimed prior-
ity from New Zealand Patent Application No. 572036, filed
on Oct. 15, 2008, which is hereby incorporated by reference.
PCT/NZ2009/000222 also claimed priority from U.S. Patent
Application No. 61/105,742, filed on Oct. 15, 2008, which is
hereby incorporated by reference.

BACKGROUND

1. Field

The described technology relates to data analysis and pre-
dictive systems and related methodologies. In particular the
described technology relates to customised or personalised
data analysis and predictive systems and related methodolo-
gies.

2. Description of Related Technology

The concept of personalised medicine has been promoted
widely in the recent years through the collection of person-
alised databases, establishment of new journals and new soci-
eties and publications in international journals (see for
example ref. 1-7). Despite the furore of interest in this area,
there are at present no adequate data analysis methods and
systems which can produce highly accurate and informative
personalised models from data.

Contemporary medical and other data analysis and deci-
sion support systems use predominantly inductive global
models for the prediction of a person’s risk, or likely outcome
of a disease for an individual. In US20050131847A1, for
example, features are pre-processed to minimise classifica-
tion error in a global Support Vector Machine model used to
identify patterns in large databases. Pre-processing may be
performed to constrain features used to train the global SVM
learning system. Global modelling in general is concerned
with deriving a global formula (e.g. via regression, a “black
box neural network”™, or a support vector machine) from the
personal data of many people. The global formula is expected
to perform well on any new subject, at any time, anywhere in
world. Based on this expectation, drugs may be designed to
target a disease, and these drugs are assumed to be useful for
everybody who suffers from this disease. When a global
model is created, a set of features (variables) may usually be
selected that applies to the whole problem space (e.g., all
samples in the available data). However, statistics have shown
very clearly that drugs developed by such global models will
only be effective for around average of 70% of people in need
of treatment, leaving a relatively large number of patients
who will not benefit at all from treatment with the drug. With
aggressive diseases such as cancer, any time wasted, e.g.
either a patient not being treated, or being treated, with an
ineffective treatment, can be the difference between life and
death. In particular, it would be useful to determine from a
sample taken from a patient (e.g. blood sample, tissue, clini-
cal data and/or DNA) into what category a patient falls. This
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2

information can also be used to determine and develop treat-
ments that will be effective at treating the remainder of the
population.

It would therefore be useful if there could be provided data
analysis methodologies and systems, which based on avail-
able population data, are capable of creating models which
are more useful and informative for analysing and/or assess-
ing an individual person for a given problem. Such models
should also ideally achieve a higher degree of accuracy of
prediction of outcome or classification than conventional sys-
tems and methodologies.

A step towards personalised medicine and profiling may be
the creation of global models, that cover a whole population
of'data, but importantly comprise many local models, each of
them covering a cluster (neighbourhood) of similar data
samples (vectors) Such models are called local learning mod-
els. Such models may be adaptive to new data. Once created,
a person’s information can be submitted and a personal pro-
file extracted in terms of the closest local model which may be
based on the neighbourhood of vectors in the dataset closest
to that of subject person. Such models include evolving con-
nectionist systems (EGOS), such as those previously devel-
oped, patented and published (Kasabov 2000, 2002 and
2007). These methods identify groups (clusters or neighbour-
hoods) of similar samples and develop a local model for each
cluster through a machine learning algorithm, collectively all
clusters cover the whole problem space. While local learning
models have been very useful to adapt to new data and dis-
cover local information and knowledge, these methods do not
select specific subsets of features and precise neighbourhood
of'samples for a specific individual that would be required for
a true personalised modeling, for example in personalised
medicine.

While inductive modeling results in the incremental cre-
ation of a global model where new, unlabeled data may be
“mapped” through a recall procedure, transductive inference
methods (transductive models) estimate the value of a poten-
tial model (function) only in a single point of the space (e.g.,
that of the new data vector) and utilise the information (fea-
tures) of samples close in space (e.g., related to this point).
This approach seems to be more appropriate for clinical and
medical applications, where the focus may be not so much on
the model, but more on the individual patient. The focus may
be on the accuracy of prediction for any individual patient as
opposed to the global error associated with a global model
which merely highlights the shortcomings of an inductive
approach. Thus, with a transductive approach each individual
data vector (e.g. a patient in any given medical area) obtains
a customised, local model, that best fits the new data, rather
than a global model, where new data may be matched to a
model (formula) averaged for the whole dataset which fails to
take into account specific information peculiar to individual
data samples. Thus a transductive approach seems to be a step
in the right direction when looking to devise personalized
modelling useful in personalized medicine.

The general principle of transductive modeling can be
stated as the following: for every new input vector X, that
needs to be processed for a classification or a prognostic task,
the closest K samples, that form a new sub-data set Dx, may
be derived from an existing global data set D. A new model
Mx may be dynamically created from these samples. The
system may then be used to calculate the output value y for
this input vector x (Vapnik 1998).

A simple and classical transductive inference method may
be the K-nearest neighbour method (K-NN) where the output
value y for a new vector x may be calculated as the average of
the output values of the K-nearest samples from the data set
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Dx. In a weighted K-NN method (WKNN) the output y may
be calculated based on the weighted distance of the K-NN
samples to x:

Y= Eim kW) G k(W) M

where: y is the output value for the sample x from Dx; y; is the
output value for the sample x; in the neighbourhood of x; w; is
the weighted distance between x and x; measured as:

w=max(d)-[d,-min(d)]. 2)

In Eq. (2), the vector distance d=[d,, d,, . . . dz] may be
defined as the distances between the new input vector x and
the nearest samples (x;, y,) for j=1 to K; max(d) and min(d)
are the maximum and minimum values in d respectively.

In general, distance between two g—element vectors x and
7 of same variables may be measured as normalised Euclid-
ean distance defined as follows:

d, ~SQRTE ) 1o o2V g 3

In another classification method, called WWKNN, not
only may the nearest samples be weighted based on their
distance to the new sample x, but the contribution of each of
the variables may be weighted based on their importance for
the nearest neighbor area of x (Kasabov 2007).

The KNN, WKNN and WWKNN methods use a single
formula to calculate the output y for the input vector x based
on the K nearest neighbours. These methods do not suggest
how to select the number K and the most suitable set of K
nearest samples, neither they suggest how to select the num-
ber of variables V, that would give the best accuracy of each
personalised model Mx. By way of contrast these methods
use a fixed number of K nearest neighbours and a fixed
number of variables.

Other methods create a machine learning model from the K
nearest neighbours and the model may then be used to calcu-
late the output y. Such methods for example are: Transductive
Neural Fuzzy Inference System—NF1 and Transductive Neu-
ral Fuzzy Inference System with Weighted Data Normaliza-
tion—TWNFI (Song and Kasabov 2006). As the above group
of methods, these methods do not suggest how to select the
number K of nearest samples, neither they suggest how to
select the number of variables V, that would give the best
accuracy of the personalised model Mx.

To summarise, in the above transductive methods, there is
no efficient method for personalised feature selection (e.g.
features such as important genes, clinical and/or other vari-
ables) required for personalised prognosis, classification,
profiling, and/or treatment selection. These transductive
methods also do not rank variables (features) in terms of
importance for a person and for an optimal personal model
creation based on these variables and a personalised selection
of the nearest neighbour samples from the available data set.
There is also no methodology to suggest how individual sce-
narios for personal improvement (e.g. treatment) can be
designed.

SUMMARY OF CERTAIN INVENTIVE ASPECTS

According to an aspect of the described technology a com-
puter implemented method of optimising a model Mx suit-
able for use in data analysis and determining a prognostic
outcome specific to a particular subject (input vector x), the
subject comprising a number of variable features in relation to
a scenario of interest for which there is a global dataset D of
samples also having the same features relating to the scenario,
and for which the outcome is known is provided; the method
comprising:
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4

a) determining what number and which variables (features)
Vx will be used in assessing the outcome for the input
vector X;

b) determining what number Kx of samples from within the
global data set D will form a neighbourhood about x;

¢) selecting Kx samples from the global data set which have
the variable features that most closely accord to the vari-
able features of the particular subject x to form the neigh-
bourhood Dx;

d) ranking the Vx variable features within the neighbourhood
Dx in order of importance to the outcome of vector x and
obtaining a weight vector Wx for all variable features Vx;

e) creating a prognostic model Mx, having a set of model
parameters Px and the other parameters from elements
a)-d);

1) testing the accuracy of the model Mx at element e) for each
sample from Dx;

g) storing both the accuracy from element f), and the model
parameters developed in elements a) to e);

h) repeating elements a) and/or b) whilst applying an optimi-
sation procedure to optimise Vx and/or Kx, to determine
their optimal values and the corresponding sets, before
repeating elements ¢)-h) until maximum accuracy at ele-
ment 1) is achieved.

According to another aspect of the described technology a
method as described above is provided which includes:

1) calculating the outcome y for the input vector x using the
optimised model Mx created at element h).

According another aspect of the described technology a
method substantially as described above is provided which
includes:

j) profiling input vector x and comparing important variable
features against important variable features associated
with a desired outcome to provide for, or assist with, devel-
opment of, scenarios for improvement of the outcome for
input vector X.

According another aspect of the described technology a
computer implemented method of determining a profile of a
subject (input vector x) based on a model Mx and for recom-
mending changes to the profile in relation to a scenario of
interest in order to improve the outcome for input vector X is
provided comprising:

(D) creating a personalised profile of input vector x;

(IT) comparing each important variable feature of input vector
x to the average value of each important variable feature of
samples having the desired outcome; and

(IIT) determining which important variable features of input
vector X can be altered in order to improve the outcome.
It is desirable in certain embodiments that the determina-

tion of which variables should be changed will take into
account the weight vector Wx of the variable. It is desirable in
certain embodiments that the variables that will be changed
will be those which may be important with respect to the
outcome.

The term ‘personalised profile’ as used herein refers to an
input vector and to the predicted outcome for that vector.

According another aspect of the described technology a
system is provided which includes:

aprocessor and associated memory (herein collectively the

hardware); the system characterized in that the hardware
has been programmed to:

access a global dataset of samples relating to a scenario of

interest, and for which the outcome is known, each
sample having a number of variable features, which may
or may not relate to the scenario;

receive input information relating to an input vector x; and

to perform a method substantially as described above.
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A computer memory medium which contains a program
which is capable of performing a method as described above
on a global dataset of samples for which the outcome is
known relating to a scenario of interest, each sample having a
number of variable features, which may or may not relate to
the scenario; and wherein the program provides for an user
interface to receive input information relating to an input
vector X and wherein the program also provides for graphic
display of the method results.

An embodiment of the proposed method and system of
optimising a model Mx suitable for use in data analysis and
determining a prognostic outcome may include the following
modules as shown in FIG. 1):

Module for most relevant features (variables) Vx selection

and their ranking Wx by importance for x;

Module for the selection of a number Kx of neighbouring
samples of x and for the selection of neighbouring
samples Dx;

Module for a prognostic model Mx creation, defined by the
model parameters Px and the parameters including Kx,
Vx, Dx which were derived in the previous modules;

Module for a final output y calculation for x, for person-
alised profiling; and

Module for the design of scenarios for improvement.

The described technology has utility in relation to a wide
variety of scenarios of interest in areas as diverse as meteo-
rology, drug development, bioinformatics, personalized
medicine, psychological profiling, nutri-genomics, finance
and economics, to name but a few.

For ease of reference only the described technology will
now be discussed in relation to personalized medicine, how-
ever, this should not be seen as limiting.

The variable features, also referred to as simply variables
or features, may be any piece(s) of information that one has
collected in relation to samples forming a global dataset relat-
ing to a scenario of interest. In personalized medicine appli-
cations of the described technology the variable features may
relate to the different genes of patients implicated in a disease
or disorder, clinical data, age, gender. In fact the variable
features may be almost information that has been collected
from or about the patients in the dataset which may be of
relevance to the disease of interest.

We assume that the scenario of interest (e.g., the problem
which is to be analysed) is either:

Classification—TFor simplicity we can assume two classes
of'outcome (e.g., output values) for an input vector (e.g.,
class 1 (survive a disease after treatment), and class 2
(die of disease after treatment)). However, it will be
appreciated that the described technology is also appli-
cable to multiple class classification problems; or

Risk evaluation and prediction—where the output values
assigned to the samples are continuous values. For
example: renal function evaluation measured as GFR;
cardio-vascular risk measured in probability of an event
to happen; for example the risk of diabetes.

The described technology assumes that there is a global
data set D (or multiple data sets) of individual records
(samples) Si=(x,,y,), i=1, 2, .. ., N. There is also a new input
vector x for which an output value (outcome) y is to be
calculated.

The variables in the data set D partially or preferably fully
overlap with the variables in the new input vector x. If it is a
partial overlap, a common variable set of q variables in D and
x is determined and a new data set is created as a subset of D.
Initially, it is assumed that all variables have equal absolute
and relative importance for x in relation to predicting its
unknown output y:
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The numbers initially determined for Vx and Kx at steps a)
and b) may be determined in a variety of different ways
without departing from the scope of the present invention.

In preferred embodiments the number for Vx (Step a) and/
or Kx (Step b) may be initially determined (e.g., prior to
iteration of the method steps as per step h)) following an
assessment of the global dataset in terms of size and/or dis-
tribution of the data. Minimum and maximum values of these
parameters may also be established a priori based on the data
available and the problem. For example, Vx_min=3 (mini-
mum three variables used in a personalised model) and
Vx_max<Kx (the maximum variables used in a personalized
model is not larger than the number of samples in the neigh-
bourhood Dx of x), usually Vx_max<20. The initial set of
variables may include expert knowledge, e.g., variables
which are referenced in the literature as highly correlated to
the outcome of the problem (disease) in a general sense (over
the whole population). Such variables are the BRCA genes,
when the problem is predicting outcome of breast cancer (van
Veer et al, 2002). For an individual patient the BRCA genes
may interact with some other genes, which interaction will be
specific for the person or a group of persons and may be likely
to be discovered through local or/and personalized modeling
only (Kasabov et al, 2005).

The present invention, when compared with global or local
modeling, may start the modeling process with all relevant
variables available for a person, rather than with a fixed set of
variables in a global model that may well be statistically
representative for a whole population, but not necessarily
representative for a single person in terms of optimal model
and best profiling and prognosis for this person.

Selecting the initial number for Kx and also the minimum
and the maximum numbers Kx_min and Kx_max will also
depend on the data available and on the problem in hand. A
general requirement is that Kx_min>Vx, and, Kx_max<cN,
where ¢ is for example 0.5. Several formulas have been
already suggested and experimented (Vapnik, 1998; Mohan
and Kasabov, 2005), for example:

Kx_min equals the number of samples that belong to the
class with smaller number of samples when the data is
imbalanced (one class has many more samples, e.g.
90%, than the another class) and the available data set D
is of small or medium size (e,g., hundreds to few thou-
sands samples);

Kx_min=SQRT (N), where N is the total number of
samples in the data set D.

A subsequent iterations of method steps a) and b) the Vx
and Kx parameters may be optimized pursuant to step h) via
an optimization procedure such as is outlined further below.

At step h) the optimization procedure(s) which can be
employed with the method and system of the described tech-
nology may include three alternative methods and/or a com-
bination of the methods set out below:

1. An exhaustive search, where all or some possible values of
the all or some of the parameters Vx, Wx, Kx, Mx and Px
(see FIG. 2) within their constraints, are used in their com-
bination and the model Mx with the best accuracy is
selected.

2. A genetic algorithm (GA) may be used (Goldberg 1989) to
optimize all or some parameters from the “chromosome”
(FIG. 2).

Wolnorm™ Ws2 norm™ + +
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Genetic algorithms (GA) are methods that have been used
to solve complex combinatorial and organizational
problems with many variants, by employing analogy
with Nature’s evolution. Genetic algorithms were intro-
duced for the first time in the work of John Holland
(Holland 1975). They were further developed by him
and other researchers (Goldberg 1989).
The most important terms used in a GA are analogous to
the terms used in biology in relation to the study of
Genetics. They are:
gene—a basic unit, which defines a certain characteris-
tic (property) of an individual. In case of FIG. 2,
“genes” are the parameters and variables to be opti-
mized for a personalized model Mx.

chromosome—a string of genes; it is used to represent
an individual, or a possible solution to a problem in
the solution space (see FIG. 2).

population—a collection of individuals—in our case it
is a population of chromosomes each one represent-
ing one personalised model for the new input vector x.

crossover (mating) operation—a set of different models
is taken and a new set of models is produced, e.g. from
two models, each represented by a chromosome, new
ones are generated through combining parts of the
first model chromosome (mother) and parts from the
other (father).

mutation—random change of'a gene (variable) in a chro-
mosome.

fitness (goodness) function—a criterion which evaluates
how good each individual is. In our case it will be the
accuracy Ax of the model (or the error Ex).

selection—a procedure of choosing a part of the popu-
lation which will continue the process of searching for
the best solution, e.g. the 10 best models.

The steps in a GA are:

Generate initial population of individuals (personalised
models)—each individual defined as a chromosome
containing parameters—genes (This is done in Steps
a and b as explained in the invention).

Evaluate the fitness of each individual (the accuracy of
each model) using a fitness function (accuracy of the
model Ax). In our case this is done in Step f.

Select a subset of individuals based on their fitness (This
is done is Step h.

Apply a crossover procedure on the selected individuals
to create a new generation of a population h

Apply mutation h

Continue with the previous procedure h until a desired
solution (with a desired fitness) is obtained, or the run
time is over.

Genetic algorithms comprise a great deal of parallelism.
Thus, each of the branches of the search tree for best
individuals can be utilized in parallel with the others.
This allows for an easy realization of the genetic algo-
rithms on parallel architectures.

Selection of the best models to continue the process of
optimization is based on fitness. A common approach is
proportional fitness (roulette wheel selection), e.g., if a
model Mx is twice as good as another one, its probability
of being selected for the crossover process is twice
higher. Roulette wheel selection gives chances to indi-
viduals according to their fitness evaluation (see
example below (from Kasabov, 2007).

Important feature of the selection procedure is that fitter
individuals (models Mx with higher accuracy) are more
likely to be selected.
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The selection procedure can involve also keeping the best
individuals from the previous generation. This operation
is called elitism.

After the best individuals are selected from a population of
models, a cross over operation is applied between these
individuals. Different cross-over operations can be used:

one-point cross-over;

three-point cross over (as shown in FIG. 8 from Kasabov,
2007), or more.

Mutation can be performed in the following ways:

For a binary string, just randomly “flip” a bit.

For a more complex “genes” and “chromosomes”, ran-
domly select a gene an change its value.

Some GA methods just use mutation (no crossover, e.g.
evolutionary strategies). Normally, however, mutation is
used to search in a “local search space”, by allowing
small changes in the “genotype” (and therefore hope-
fully in the “phenotype”).

In other implementations of the proposed in the invention
method and system other evolutionary computation
algorithms can be used for the optimization of the
parameters of a personalized model (FIGS. 1, 2), such as
evolutionary strategies (Kasabov, 2007).

While GA have been used in some previously developed
methods for model optimization, e.g.: NeuCom and
ECF parameter and feature optimization for local mod-
eling; model and parameter optimization of global mod-
els (Sureka, 2008); basic parameter and feature optimi-
zation for personalised models (Mohan and Kasabov,
2005), GA and the other evolutionary optimization tech-
niques have never been used for the integrated optimi-
zation of features V, feature weights W, number of near-
est neighbours K, models M and their parameters P
related to personalised modeling.

Step ¢) goes on to find the closest Kx neighboring samples
to x from D and forms a new data set Dx. Preferably, step ¢)
uses a novel distance measure which is a local weighted
variable distance measure that weighs the importance of each
variable V, (I=1, 2, . . ., q) to the accuracy of the model
outcome calculation for all samples in the neighbourhood Dx
using a classification or prediction model. For example, the
distance between x and another sample z from Dx may be
measured as a local weighted variable distance:

d, ~SQRTE 1 15 gl (1= Wi o) 5121V Q)

where: w; is the weight assigned to the variable V, and its
value is calculated as:

M
The above formulas (6) and (7) are different from the
traditionally used one (3) and this is the basis of a novel
supervised neighbourhood clustering method proposed here,
where the distance between a cluster centre (in our case it is
the vector x) and cluster members (neighborhood samples
from Dx) is calculated not only based on the geometrical
distance, as it is in the traditional unsupervised clustering
methods, but on the relative importance weight vector Wx for
the output values of all samples in the neighborhood Dx.
After a subset Dx of Vx variables and Kx samples is
selected in step c), the variables are ranked at step d) in a
descending order of their importance for prediction of the
output y of the input vector x and a weighting vector Wx
obtained. Through an iterative optimization procedure
explained below the number of the variables Vx to be used for
an optimized personalized model Mx will be reduced, select-
ing only the most appropriate variables that will provide the
best personalized prediction accuracy of the model Mx. For

Winorm™ WiZ 40 q(Wl)
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the weighting Wx (e.g., ranking) of the Vx variables, the
following alternative methods can be used:

(1) In one implementation, applicable to a classification
task, calculate Wx as normalised SNR (Signal-to-Noise
Ratio) coefficients (or another ranking coefficients, such
as t-test, or p-value) and sort the variables in descending
order: V1, V2, .. ., Vv, where: w >=w,>= ... >=w
calculated as follows:

wi—abs(M, e Lo_pp(elass
(Std,(ass D Std a2

v

2,>c)) %
®)

Here M%) and Std,“"*** ) are respectively the mean
value and the standard deviation of variable x, for all vectors
in Dx that belong to class s.

This method is very fast, but evaluates the importance of
the variables in the neighborhood Dx one by one and does not
take into account a possible interaction between the variables
that might affect the model output.

(ii) In another implementation, applicable to both classifi-
cation and prediction tasks, for all variables Vx all pos-
sible combinations of values of their weights Wx are
tested through an exhaustive search to maximize the
overall accuracy of a model built on the data Dx. For
example, each variable weight w, can take values from 0
to 1 with astep 0of 0.2. In this case, the number of the tests
will be 6", which for small number of variables is
operational but for a large number of variables is very
time consuming and not practical. This is an exhaustive
search method for the optimization of the variable
weights Wx in regard to the model output for all samples
from Dx.

(iii) In a third implementation, applicable if the number of
variables prevents using method (ii) above, a faster opti-
mization method can be used instead of the exhaustive
search of all possible combinations as in (ii). Such
method is for example the GA (as explained above).

(iv) In a fourth implementation, another evolutionary algo-
rithm—quantum inspired evolutionary algorithm, is
used to select the optimal variable set Vx for every new
input vector X and to weigh the variables through prob-
ability wave function as in (Defoin-Platel, Schliebs,
Kasabov, 2007 and 2008).

At step e) to create a prognostic model Mx a classification
or prediction procedure is applied to the neigbourhood Dx of
Kx samples to derive a personalized model Mx using the
already defined variables Vx, variable weights and a model
parameter set Px. At step f) a local accuracy error Ex, that
estimates the personalised accuracy of the personalised prog-
nosis (classification) for the data set Dx using model Mx is
evaluated. This error is a local one, calculated in the neigh-
borhood Dx, rather than a global accuracy, that is commonly
calculated for the whole problem space D.

A variety of methods for calculating error can be employed
such as.

A novel formula for calculating error which may be uti-
lized in preferred embodiments of the present invention:

Ex~(8, g (1-d, )E)/Kx ©

where: d,; is the weighted Euclidean distance between
sample x and sample Sj from Dx that takes into account the
variable weights Wx; E; is the error between what the model
Mx calculates for the sample j from Dx and what its real
output value is, for example: if the model Mx calculates for
the sample SjeDx an output of 0.3 and this is a classification
problem where sample Sj’s class is 0, the error will be 0 if a
classification threshold of 0.5 is used; the error Ej will be 0.2
if the desired output for Sj is 0.1 and it is a risk prediction
problem.
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In the above formula, the closer a sample Sj to x is, based
on a weighted distance measure, the higher its contribution to
the error Ex. Distant samples from x in Dx do not contribute
much to the local error Ex.
The calculated personalized model Mx accuracy at step 1)
is:

Ax=1-Ex (10)

At step g) the best accuracy model obtained is stored for a
future improvement and optimization purposes,
It is envisaged that the described technology may employ
any number of different classification or prediction proce-
dures at step e) to create the model. These may preferably
include methods that use weighted variables for the evalua-
tion of an output value when an input vector is presented.
Two, publicly available methods of this category are:
The weighted-weighted K-nearest neighbor method,
WWKNN (Kasabov, 2007a, b);

The transductive, weighted neuro-fuzzy inference method
TWNFI (Song and Kasabov, 2006)

but should in no way be restricted to them. Statistical
methods, such as: linear regression method; logistic
regression; support vector machine; nearest neighbour
K-NN method; W-KNN method; and machine learning
methods, such as: neural networks; fuzzy systems;
evolving fuzzy neural network EFuNN (Kasabov, 2000,
2002, 2007) can also be used for some specific applica-
tions.

At step h) the method iteratively returns to all previous
steps to select another set of parameter values for the param-
eter vector from FIG. 2 according to one of the four optimi-
zation procedures listed above (exhaustive search, genetic
algorithm, quantum evolutionary algorithm, a combination
between these three methods) until the model Mx with the
best accuracy is achieved.

The method at step h) may in some preferred embodiments
also optimize the classification procedure that is used by the
method at step e) along with the parameters Px of said pro-
cedure.

The method at step h) may also preferably optimize any
parameters Px of the classification/prediction procedure.
These parameters Px may be optimized by an optimization
procedure substantially as described above.

Once the best model Mx is derived at step h), at step 1) an
output value y for the new input vector x is evaluated using
this model. For example, when using the WWKNN method,
the output value y for the input vector x is calculated using the
formula:

Y=o @y Em & (W) (1n
where: y, is the output value for the sample x in the neigh-
bourhood Dx of x and:

a=max(d)-[d-min(d)]. (12)

In Eq. (16), the vector distance d=[d |, d,, . . . d5] is defined
as the distances between the new input vector x and the
nearest samples (x,, y,) for j=1 to K; max(d) and min(d) are the
maximum and minimum values in d respectively. Euclidean
distance d; between vector x and a neighboring one x; is
calculated now as:

(13)

where: w, is the coefficient weighing variable x, in the neigh-
bourhood Dx of x as per Step d).

dj:Sqr [sumy_; AW x~ jl))2]>



US 9,195,949 B2

11

When using the TWNFI classification or prediction model,
the output y for the input vector x is calculated as follows:

14

Z 5 ]_I w”exp[
Sa

wz(xlj my;) }

Zo'lj

wz(xlj mlj) }

Zo'lj

Where: M is the number of the closest clusters to the new
input vector x, each cluster 1 defined as a Gaussian function G,
in a Vx dimensional space with a mean value m, as a vector
and a standard deviation 9, as a vector too; x=(x1,X2,...,X,);
a, (also a vector across all variables V) is membership degree
to which the input vector x belongs to the cluster Gaussian
function G n, is a parameter of each cluster (see Song and
Kasabov, 2006).

After the output value y for the new input vector x has been
calculated at step 1), at step j) a personalized profile Fx of the
person represented as input vector X is derived, assessed
against possible desired outcomes for the scenario, and pos-
sible ways to achieve an improved outcome can be designed.

In one implementation, a personal improvement scenario,
consisting of suggested changes in the values of the persons’
variable features to improve the outcome for x, according to
method steps (I)-(111) below, may be designed as follows:

Atstep () The current person’s X profile Fx may be formed
as a vector:

F ={Vx,Wx,Kx,Dx,Mx,Px,}, (15

where the variable t represents the time of the model Mx
creation. At a future time (t+At) the person’s input data x may
change to x' (due to changes in variables such as age, weight,
gene expression values, etc.), or the data samples in the data
set D may be updated and new samples added. A new profile
Fx' derived at time (t+At) may be different from the current
one Fx.

At step (II) an average profile Fi for every class Ci in the
data Dx (e.g. class 1-—good outcome or a desired person’s
profile, class 2—bad outcome, non-desirable profile) may be
created as follows:

Fi={(V\ _av_ctass_sV2_av_ctass_»
Wy class_)X(WLWa, - . -,

W} 16)

where: Vl,av,classgzxj: 1,Nx,classJ( Vlﬁ/,i)/ Ny class_i 17)

where: V,_,; is the value of the variable V, for the sample j of
classiinthedatasetDx of N, .., ,neighbouring samples to
x in Dx that belong to class Ci.

The importance of each variable feature is indicated by its
weighting. The weighted distance from the person’s profile
Fx and the average class profile Fi (for each class i) may be
defined as:

D(Fx,Fi)=Z, ; ,abs(V;~Vy)w; (18)

where: w, is the weight for the variable V, in the data set Dx.

Assuming that Fd is the desired profile (e.g. good outcome)
the weighted distance D(Fx,Fd) may be calculated as an
aggregated indication of how much a person’s profile should
change to reach the average desired profile Fd:

D(Fx,Fd)ZZIZMabS(le— Vig)w; (19)

Atstep (IIT) a scenario for a person’s improvement through
changes made to variable features towards the desired aver-
age profile Fd may be designed as a vector of required vari-
able changes, defined as:
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deltaFx,d=(deltaVy 4) o 11, 2 follows: (20)

deltaVy, ;=V;~V3, with an importance of: w; 21

In any given scenario certain variable features of input
vector x will automatically be, or can be manually, selected as
being not capable of being altered in order to improve the
outcome. One example of such a variable which can not
generally be altered (e.g., targeted) to affect outcome may be
age and another such variable feature may be gender.

Thus, example embodiments of the described technology
may have a number of advantages, which can include among
other things:

(1) Providing a more accurate prognosis for an individual
input vector (a personal outcome) when compared with the
use of already created local and global models;

(i1) Providing a unique personal profiling methodology and
system and assisting with the design of possible improve-
ment scenarios if necessary;

(iii) Providing an improved personalised model, in advance,
or, when new feature variables for a person are available or
new samples in the data are made available;

(iv) Providing a personalised model which can capture and
explain, for an input vector x, specific interactions between
feature variables that can provide a key for better person-
alised profiling and outcome prediction;

(v) Providing a methodology and system which can be
applied to a wide range of scenarios where prediction of
outcome is useful;

(vi) Providing an improved formula for calculating local error
in predictive data analysis models.

(vii) Providing a procedure to select nearest neighbours of a
vector x from a given data set, that procedure takes into
account already defined personalised weights of impor-
tance for each variable.

BRIEF DESCRIPTION OF DRAWINGS

Further aspects of the described technology will become
apparent from the following description which is given by
way of example only and with reference to the accompanying
drawings in which:

FIG. 1 shows a block diagram of the method which would
be implemented by the system.

FIG. 2 shows diagrammatically the key parameters which
are optimised and utilised in the present invention.

FIG. 3 shows the selected neighbourhood area Dx of 50
samples around a sample #180 (represented as a diamond) in
the 3D space of the top three ranked variables V11, V10 and
V49 (out of 14) for the best personalised classification model
related to classifying samples belonging to two classes—
rocks and mines, from a standard bench mark data set
explained in Example 2.

FIG. 4a-h Personalized modeling demonstrated in
Example 3 on renal function evaluation data (Marshal et al,
2005). A new sample x is denoted by a green triangle and its
nearest neighbours Dx—as circles. All other data from a data
set of 584 data samples are shown as “+” sign. Vx=3; Kx=30.
Staring with equal weighting of the three variables, at 8 itera-
tions shown in (a) to (h) different neighborhood sets Dx are
selected depending on different weights Wx calculated. A
WWKNN model Mx is created and its local accuracy Ax is
evaluated on the 30 samples in Dx. The average local error is
calculated and visualized as darkness of the filled neighbor-
ing samples (the lighter the color, the less the error).
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FIG. 5a A sample x from the Lymphoma outcome predic-
tion data set (Shipp et al, 2002) shown with 26 neighboring
samples in the 3D space of the top 3 gene expression variables
(see Example 4).

FIG. 56 An improvement scenario for sample x from the
Lymphoma outcome prediction data set (Shipp et al, 2002)
for which a fatal outcome (class 1) is predicted. The figure
shows how much each feature variable (gene expression
value) needs to be changed for this person to <<move>>to the
average good outcome profile (see Example 4).

FIG. 6 Identified SNP regions (associated signals) for the
Crohn’s disease from the whole data set (wtccc.org) in the
WTCCC project (see Example 5) and their mapping on the
chromosomes. One gene, related to a SNP region, is identified
that may be used as a treatment or drug target (modified from
R. Lea at al, 2009).

FIG. 7 A block diagram of a personalised modelling, pro-
filing and risk analysis system for SNPs DNA data sequence
analysis, obtained as an application system from the general
block diagram in FIG. 1 (see Example 5).

FIG. 8 A three point cross over operation is shown, where
the two individual cross over through exchanging their genes
in 4 sections, based on usually randomly selected 3 points.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE EMBODIMENTS

For ease of reference the described technology will now
primarily be discussed in relation to an implementation for
personalised medicine however this should not be seen as
limiting. The described technology has applications in infor-
mation science, mathematical modelling, personalised medi-
cine, personalised drug design, personalized food design,
profiling and prognostic systems for predicting outcomes, or
evaluating risks, based on a dataset of information which
includes information relating to past outcomes for a given
scenario.

Thus, the described technology may be applied to a wide
range of datasets for which there may be information relating
to the composition of different data elements together with
information as to the known outcome for an individual data
element or combination of elements in relation to a scenario
of interest.

An underlying philosophy behind the described technol-
ogy is the realisation that every person is different, and there-
fore an individual ideally needs their own personalised model
and tailored treatment. The implementation of this philoso-
phy has now become more of a reality given the fact that more
and more individual data for a person, e.g., DNA, RNA,
protein expression, clinical tests, age, gender, BMI, socio
factors, inheritance, foods and drugs intake, diseases, to name
a few—are more readily obtainable nowadays, and are easily
measurable and storable in electronic data repositories for a
lesser cost.

The described technology includes a method and a system
for the selection and ranking of important personal variables
Vx related to an input vector x and a problem, for the selection
of the most appropriate number of nearest neighbouring
samples Kx and also the most appropriate nearest samples,
for the creation of an optimal personalised prognostic model
Mx. The described technology allows for the prediction of
outcome, or for risk evaluation, in relation to an input vector
x following the creation of the prognostic model Mx. The
described technology can also be used for the design of per-
sonal improvement scenarios. The method of the described
technology may be based on the use of a person’s information
X, that may include DNA, gene expression, clinical, demo-
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graphic, cognitive, psychiatric data, and a comparison against
this personal information from other people within a data set.
The proposed general method iteratively selects the most
important features (variables) VX, ranks them through a
weight vector Wx for the person in relation to the problem,
selects the optimum number Kx of neighbours and selects the
set Dx of neighbouring samples, creates a personalised prog-
nostic model Mx with optimal parameters Px using the
selected variables and nearest samples. These parameters,
Vx, Wx, Kx, Dx, Mx, Px may be sclected and optimised
together, (e.g., in concert), so that the best accuracy of the
personalised prognosis, or close to it may be achieved. This is
a desirable aspect of the proposed method. Another desirable
aspect of the method is a personalised profiling procedure in
terms of defining variables that may need to be modified in a
concert for the design of personal improvement scenarios
afterwards, depending on the problem and the available
resources. The method allows for an adaptation, monitoring
and improvement of the personalised model should new data
about the person or the population become available. Poten-
tial applications are in personalised medicine and person-
alised drug design for known diseases, (incl. cancer, cardio-
vascular disease, diabetes, renal diseases, brain disease, etc.),
as well as for some other modelling problems in ecology,
meteorology, sociology, crime prevention, business, finance,
to name but a few.

All references, including any patents or patent applications
cited in this specification are hereby incorporated by refer-
ence. No admission is made that any reference constitutes
prior art. The discussion of the references states what their
authors assert, and the applicants reserve the right to chal-
lenge the accuracy and pertinence of the cited documents. It
will be clearly understood that, although a number of prior art
publications are referred to herein, these references do not
constitute an admission that any of these documents form part
of'the common general knowledge in the art, in New Zealand
or in any other country.

It is acknowledged that the term ‘comprise’ may, under
varying jurisdictions, be attributed with either an exclusive or
an inclusive meaning. For the purpose of this specification,
and unless otherwise noted, the term ‘comprise’ shall have an
inclusive meaning—e.g., that it will be taken to mean an
inclusion of not only the listed components it directly refer-
ences, but also other non-specified components or elements.
This rationale will also be used when the term ‘comprised’ or
‘comprising’ is used in relation to one or more steps in a
method or process.

It is an object of the described technology to address the
foregoing problems or at least to provide the public with a
useful choice.

Further aspects and advantages of the described technol-
ogy will become apparent from the ensuing description which
is given by way of example only.

FIG. 1 diagrammatically details the key method elements
a)-i) in relation to a global data set D (1) relating to a scenario
of interest and an input vector x (2) having a number of
variables (3).

As per method elements a)-d) determine Vx and Kx then
select the neighbourhood (4) then select, rank and optimize
the most important variables Vx for a given individual input
vector X and obtain a weight vector Wx of variable impor-
tance (5). Initially Vx variables may be treated as being
equally important; however, in subsequent iterations of the
method element s, the weighting vector Wx for each variable
may be recalculated and optimized at element d). In addition
subsequent interations of the method element s a)-d) seek to
optimize Vx, Kx, Wx and the neighbourhood Dx. Further-
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more, in some preferred embodiments subsequent iterations
of element e) may also seek to optimize the classification
method used in the model Mx (6).

The creation of an optimized personalised model Mx for
input vector X to predict the outcome of all samples from Dx,
also involves an evaluation the accuracy of the model through
calculating a local error Ex of the model Mx within Dx and
the accuracy Ax is recalculated as part of the iterative appli-
cation of the elements above.

In FIG. 2 all, or two or more ofthe parameters, Vx, Wx, Kx,
Dx, Mx, Px may be selected and optimized individually or
together, (e.g., in concert), so that the best accuracy of prog-
nosis, or a close to it, is achieved.

After finalising the model Mx, the output y=Mx(x) for the
personal input vector x is calculated (7), a profile of the
individual represented by x in regard to possible outcomes is
created. If necessary, improvement scenarios may be
designed, consisting of suggested changes in the values of the
selected personalised feature variables as a concert taking
into account their ranking, to improve the outcome.

The below Examples generally illustrate implementation
of the methodology and systems of the present invention.

Example 1

Classifying Rock Versus Mine Based on the
Reflection of Sonar Signal

This may be a standard bench mark data set available from
the Machine learning repository of UC Irvine:
(http://archive.ics.uci.edu/ml/datasets/Connectionist+
Bench+%28Sonar%2C+Mines+vs.+Rocks%29).

The data set was contributed to the benchmark collection
by Terry Sejnowski, now at the Salk Institute and the Univer-
sity of California at San Diego. The data set was developed in
collaboration with R. Paul Gorman of Allied-Signal Aero-
space Technology Center.

The data contains 208 samples classified in two classes—
rock vs mine based on 60 variables, continuous value between
0 and 1—reflections of a sonar signal from the objects (mine
or rock) in different frequency bands. The task is to classify
any new input vector of 60 or less such variables into one of
the two classes—rock or mine. While a global approach of
using one neural network of the type of a multilayer percep-
tron and a backpropagation learning algorithm results in 85%
accuracy of classifying new samples, here we demonstrate
that the proposed personalized modeling method achieves
94% accuracy and reveals more individual information about
new objects.

To demonstrate the method a sample x may be randomly
selected (this is sample #180) and a personalized model is
built to classify this sample following the elements from the
invention:

Element a) Vx=3 to 30.

Element b): Kx=20, . .., 50.

Element c¢) A neighbourhood data set Dx of Kx samples is

selected from all 207 samples;

Element d): For each number of variables V=3 to 30 the
variables are weighted using a normalized SNR method
to obtain the weight vector Wx;

Element e): A model Mx is created using the WWKNN
method, here applied on a larger number of variables
(60). The only parameter P of the WWKNN model that
can be optimized as part of the optimization vector FIG.
2 is the classification threshold. Here it is assumed to be
fixed at 0.5.
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Element f and g) The local accuracy is evaluated using
formulas (9-11) and stored.

Element h): The above elements are repeated in an exhaus-
tive search mode and the best model and its accuracy are
recorded which is given below:

Kx=50 neighbors;

Dx=(179190191 551955641 18894194 18914019293 95
163 193 64 57 54 208 178 42 205 38 31 196 204 203 60 207
61506259206183 19953 181 5828 173 198 2003949 184
10 121)

The best local accuracy on training data is 94.00%.

The best selected number of variables is Vx=14, which are
weighted using 50 neighbouring samples of x. The neigh-
bourhood area Dx is shown in FIG. 3 in the space of the top
three variables V11, V10 and V49.

Here is the weight vector Wx of the 14 features, evaluated
using the SNR method (formula (8)) and then the SNR values
are normalized across all features (formula (5)):

Feature # Weighted SNR value
11 0.1048
10 0.0897
49 0.0878
48 0.0809
51 0.0769
36 0.0769
47 0.0746
12 0.0721
9 0.0679
35 0.0637
46 0.0580
28 0.0510
52 0.0483
27 0.0474

Element i): Calculating the output y for x and profiling:
Calculating the output for x:

sample # output predicted class actual class

180 1.64 2 2

Profiling of sample 180 is done as explained in the description
of Element j of the invention, using formula (16):

Mean Value Mean Value Sample 180°s

Feature (Cls1) (Cls2) Value
11 0.1747 0.2896 0.3078
10 0.1593 0.2510 0.2558
49 0.0384 0.0637 0.0588
48 0.0695 0.1106 0.0969
51 0.0123 0.0194 0.0118
36 0.4607 0.3186 0.2897
47 0.0945 0.1469 0.0766
12 0.1916 0.3015 0.3404
9 0.1374 0.2135 0.1618
35 0.4555 0.3376 0.3108
46 0.1169 0.1988 0.0566
28 0.6731 0.7123 0.7834
52 0.0105 0.0160 0.0146
27 0.6877 0.7148 0.7373

Weighted distance between sample 180 and the average class
profiles for each of the two classes is calculated using formula
(18):

Distance from class1 profile: 0.0744.

Distance from Class2 profile: 0.0330.
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The above distances show that sample 180 is closer to class
2 (a smaller distance) and this is what was predicted above
when the output was calculated as 1.64.

Example 2

Personalised Modeling for the Evaluation

(Prediction) of Renal Function 0

In another implementation the method can be used for the
evaluation of the level of function of a biological system or an
organ ofanindividual, such as the functioning of the heart, the
kidney, etc. This is illustrated here on a case study problem of
renal function evaluation based on Glomerular Filtration Rate
(GFR) as an accurate renal indicator.

Several nonlinear formulas have been used in practice as
“golden standard” global models. The Gates formula (Gates,
1985) uses three variables: age, gender, and serum creatinine,
while the MDRD formula (Levey, 1995) uses six variables:
age, sex, race, serum creatinine, serum albumin and blood
urea nitrogen concentrations. While the existing formulas 25
predict the GFR for patients from different geographic areas
with different accuracy, there is no systematic way to adapt
these formulas to new data and to personalize the prediction.
The method suggested in (Marshal et al, 2005) is closest to
this goal, but does not take into account local weighting of the
variables. The problem is of prediction/identification as the

output values are GFR continuous values.

Here the proposed in the invention method for personalized
modeling is demonstrated on the data from (Marshal et al,
2005). In FIGS. 4a-/ a new sample x is denoted by a triangle
and its nearest neighbours Dx—as circles. All other data from

a data set of 584 data samples are shown as “+” sign.

For a chosen sample x (denoted as a diamond) only V=3
variables are used (Element a). A single value for nearest
neighbors Kx=30 is used (Element b). Starting with equal
weighting of the three variables, different neighborhood sets
Dx are selected (Element ¢) depending on different weights
Wx calculated (Element d).

A WWKNN model Mx is created and its local accuracy Ax
is evaluated on the 30 samples in Dx (Element e) using for-

40

45

mulas (8-11). In FIGS. 4a-/ the average local error (formulas
9 and 10) is calculated and visualised accordingly at 8 con- s
secutive iterations of: neighbourhood selection (Element c);
variable weighting (Element d) and model creation (Element
e). At consecutive iterations different neighborhood areas Dx
to the sample x are selected based on the previous local
variable weighting Wx. Improved local accuracy Ax of the
model Mx may be achieved through these iterations. In the
FIGS. 4a-h the local error in the neighbourhood is shown as
darkness of the filled neighboring samples (the lighter the

color, the less the error). 60

The experiment here demonstrates that the proposed itera-
tive nearest neighbor Dx selection based on iterative local
variable weighting Wx leads to an improved result for an
individual sample—the Root Mean Square Error (RMSE)
may be reduced more than twice (from 15.23 t0 6.5) as shown
below:

Variable
V1 (Age) V2 (Screa) V3 (Surea)
Sample x variable values:
0.1250 0.5881 0.8571
Variable weights Wx:
Local error
wl w2 w3 (RMSE)

FIG. 4a (Initial 1.0 1.0 1.0 15.23
model)
FIG. 4h (final 0.1 0.8 0.1 6.5
model)

The above profile shows that variable V3 (urea) can be the
most important variable for the neighbourhood of the input
sample x, followed by variable V2 (Serum creatinine). Using
the calculated importance through an exhaustive search pro-
cedure leads to an improved prediction (a lower error of 6.5)
in the neighbourhood of x. In the initial model, all 3 variables
were assumed to have the same importance of 1 and the local
error was more than 2 times higher (15.23).

Example 3

Personalised Modeling for Longevity Prediction of
Dialysis Patients

In another implementation, the described technology can
beused to predict the longevity of a person, based on available
data on the longevity of other individuals under similar con-
ditions.

This is illustrated on a case study example of longevity
prediction after haemodialysis using the well established
DOPPS data as explained below.

A medical dataset is used here for experimental analysis.
Data originates from the Dialysis Outcomes and Practice
Patterns Study (DOPPS, www.dopps.org)—see also: D. A.
Goodkin, D. L. Mapes & P. J. Held, “The dialysis outcomes
and practice patterns study (DOPPS): how can we improve
the care of hemodialysis patients?” Seminars in Dialysis, Vol.
14, pp. 157-159, 2001.

The DOPPS is based upon the prospective collection of
observational longitudinal data from a stratified random
sample of haemodialysis patients from the United States, 8
European countries (United Kingdom, France, Germany,
Italy, Spain, Belgium, Netherlands, and Sweden), Japan, Aus-
tralia and New Zealand. There have been two phases of data
collection since 1996, and a third phase is currently just
beginning. To date, 27,880 incident and prevalent patients
(approximately 33% and 66% respectively) have been
enrolled in the study, which represents approximately 75% of
the world’s haemodialysis patients. In this study, prevalent
patients are defined as those patients who had received main-
tenance hemodialysis prior to the study period, while incident
patients are those who had not previously received mainte-
nance haemodialysis.

The research plan of the DOPPS is to assess the relation-
ship between haemodialysis treatment practices and patient
outcomes. Detailed practice pattern data, demographics,
cause of end-stage renal disease, medical and psychosocial
history, and laboratory data are collected at enrollment and at
regular intervals during the study period. Patient outcomes
studied include mortality, frequency of hospitalisation, vas-
cular access, and quality of life. The DOPPS aims to measure
how a given practice changes patient outcomes, and also
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determine whether there may be any relationship amongst
these outcomes, for the eventual purpose of improving treat-
ments and survival of patients on haemodialysis.

The dataset for the case study here contains 6100 samples
from the DOPPS phase 1 in the United States, collected from
1996-1999. Each record includes 24 patient- and treatment
related variables (features): demographics (age, sex, race),
psychosocial characteristics (mobility, summary physical
and mental component scores (sMCS, sPCS) using the Kid-
ney Disease Quality of Life (KD-QOL®) Instrument), co-
morbid medical conditions (diabetes, angina, myocardial inf-
arction, congestive heart failure, left ventricular hypertrophy,
peripheral vascular disease, cerebrovascular disease, hyper-
tension, body mass index), laboratory results (serum creati-
nine, calcium, phosphate, albumin, hemoglobin), haemodi-
alysis treatment parameters (Kt/V, haemodialysis
angioaccess type, haemodialyser flux), and vintage (years on
haemodialysis at the commencement of the DOPPS). The
output is survival at 2.5 years from study enrollment (yes or
no).

Several global-, local and transductive modeling tech-
niques have been applied to the DOPPS data to create an
accurate classification system. Unfortunately the best models
published so far achieve only 74% accurate prediction (for a
comparative analysis of different methods, see: Ma, Q Song,
M. R. Marshall, N Kasabov, TWNFC-Transductive Neural-
Fuzzy Classifier with Weighted Data Normalization and Its
Application in Medicine, CIMCA 2005, Austria

The application of the method of the described technology
leads to a significant improvement of the accuracy and to a
personalised model derived that can be used to design a spe-
cific treatment for a person.

In relation to the experiment below (to test the method of
the present invention) the number of training samples is 958
and initial number of features V=24. The classification
method, to be utilized by the method of the described tech-
nology is WWKNN with a fixed classification threshold of
0.5.

The number of neighbouring samples is Kx=50. Sample #5
is taken as a new sample for which a personlised model is
developed and tested giving 84% local accuracy of predic-
tion.

After several iterations according to the proposed method,
the following best parameters and model are obtained:

Vx=2 (features 3 and 13);

SNR normalised weights Wx (formulas 8 and 5):
feature 3: 0.5254;
feature 13: 0.4746

Kx=50;

Dx=(455 405300 107 451 576 78 895 589 612 77 725 207
705 44 529 160 605 444 869 43 48 348 83 331 356 846
238 97 278 882 894 484 79 447 68 526 42 525179 50
415718 195210240298 118 766 664 180 121 410 411
108 786 81 788 499 787 672 631 905 872 407 886 881
237 62 889 239 586 206 396 915 952 320 891 867 104
72239335893 443 523 85734771 476 372 865 609 52
2639565838687 151851126432798321712453 618
211).

An WWKNN model is created. Best local accuracy on

training data, calculated using formulas (9-10), is
84.40%.
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The outputy of sample #5 is calculated using formula (11):

sample output actual class predicted class

5 1.99 2 2

Personalised profiling is performed for sample #5 (Ele-
ment i) from the invention using formula (16):

Feature  Mean Value(Clsl) Mean Value(Cls2) Sample 5’s Value
3 0.5161 0.5529 0.0000
13 0.4332 0.4557 0.5000

Weighted distance between sample 5 and the average class
profile is calculated using formula (18):

Clsl Cls2

0.3029 0.3115

An improvement scenario (Element j) is designed via ele-
ments (I)-(1II) of the described technology using formu-
las (19) to (21):

The sample x (sample 5 from the data base), for which a
personalised model is created, is predicted to be of class 2
(bad outcome). A possible scenario for the person to become
of class 1 (good outcome) may be designed based on the
changes in the two selected variables (3 and 13) for the current
person’s values to the average values of the persons in the
neighbourhood Dx of x who belong to class 1 (the good
outcome):

Var-  Person Impor-
iable 5wvalues  Average_class_1_values Desired_changes  tance
3 0.0000 0.5161 0.5161 0.5254
13 0.5000 0.4332 -0.0668 0.4746
Example 4

Feature Selection and Personalised Modeling for
Disease Outcome Prediction Based on Gene
Expression and Other Data

In one implementation, the proposed method and system
may be applied for predicting the outcome of a disease, such
as cancer, based on gene expression, protein and/or clinical
data.

To illustrate this claim we use a case study problem and a
publicly available data set from Bioinformatics—the DLBCL
lymphoma data set for predicting survival outcome over 5
years period. This data set contains 58 vectors—32 cured
DLBCL lymphoma disease cases, and 26—{fatal (see Shipp,
M. A.,K.N. Ross, et al. (2002). “Supplementary Information
for Diffuse large B-cell lymphoma outcome prediction by
gene-expression profiling and supervised machine learning.”
Nature Medicine 8(1): 68-74. There are 6,430 gene expres-
sion variables. Clinical data is also available for 56 of the
patients represented as IPI—an International Prognostic
Index, which is an integrated number representing overall
effect of several clinical variables.
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The task is to:

(1) Create a personalised prognostic system that predicts
the survival outcome of a new patient x for whom same
gene expression variables are available.

(2) To design a personalised profile for x that can be used to
provide an explanation for the prognosis and design of
treatment;

(3) To find markers (genes) that can be used for the design
of'new drugs to cure the disease or for an early diagnosis.

This data has been first published in (Shipp et al, 2002)
where a leave-one-out un-biased cross validation modeling
was performed. For every sample, a set of features was
selected from the rest 57 samples using the signal-to-noise
ratio, a model was created and tested on this sample with an
overall accuracy of 70%. Here, using the same data and the
same cross validation un-biased procedure as detailed in
(Shipp et al, 2002), but applying the method of the present
invention, an overall accuracy close to 90% may be achieved.
As an illustration, here a personalized model for sample #34
may be created using: 57 samples from the data set, each of
them described as a vector of 6430 variables (genes)

A WWKNN model, with a threshold of 0.5, was derived
and a profile of the sample 34 was created along with an
improvement scenario as sample #34 was correctly predicted
by the created model to belong to the class of the fatal out-
come.

After the iterative parameter optimization in Elements a-h)
the following model Mx may be created.
Kx=26 neighbours of sample 34;
Neighbouring area Dx=(24 4439295631 52120554749
402517 18 16 57 46 48 23 42 6 3 50 41);

5 features are selected as optimal for sample 34 and
weighted through SNR for the area Dx (formulas 8 and
5):

Feature (gene) Weighted SNR value

2915 0.2182
3513 0.2091
5460 0.1915
4533 0.1910
5423 0.1902

FIG. 5a shows the 26 samples from the Dx in the 3D space
of the top three variables only (genes #2915, 3513, 5460).

A WWKNN model may be created and tested as per Ele-
ment e. The best local accuracy Ax in Dx on the 26 data
samples, calculated using formulas (9-10) is 80%.

The calculated output for sample 34 using formula (11) is
0.59 and as the classification threshold is 0.5, sample 34 is
classified to belong to class 1 (bad outcome, output value 1)).

A profiling of sample 34 is designed using formula (16):

Profiling:

Feature  Mean Value(Cls0) Mean Value(Clsl)  Sample 34’s Value
2915 166.5706 37.4990 20.0000
3513 50.9251 187.9606 201.7022
5460 20.0000 35.5601 20.0000
4533 198.5793 48.7171 20.0000
5423 43.7684 21.2006 20.0000
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A weighted distance between sample 34 and the average
class profiles for Class 0 (good outcome) and Class 1 (fatal
outcome) is calculated using formula (18) as:

102.1396 (for class 0)

15.3837 (for class 1).

The above distances show that sample 34 is closer to the
average profile of the fatal outcome (class 1) than to the good
outcome (class 0) that is also confirmed by the predicted
above output value of 0.59 for sample 34.

A scenario for the improvement of a person 34 in terms of
required changes in the gene expression values of each fea-
ture variable (gene) according to Element J from the invention
(formulas 19-21) is shown below and illustrated in FIG. 55:

Desired Im-
Gene Actual_Value Desired_aver profile Improvem. portance
2915 20.0000 166.5706 146.5706 0.2182
3513 201.7022 50.9251 -150.7771 0.2091
5460 20.0000 20.0000 0.0000 0.1915
4533 20.0000 198.5793 178.5793 0.1910
5423 20.0000 43.7684 23.7684 0.1902

The above improvement scenario can be interpreted in the
following way: In order to improve the outcome for person
#34 towards the good outcome (survival), some genes (pro-
teins) need to change their expressions through drug inter-
vention or other means, so that: genes 2915, 4533 and 5423
are stimulated for a higher expression; gene 3513 is sup-
pressed for a lower expression; and gene 5460 is unchanged.
This interpretation has the potential to be used for a person-
alized treatment (e.g. drug) design for this person, where only
genes 2915, 4533, 5423 and 3513 are affected by the treat-
ment, also taking into account their importance, defined as a
local weight in the neighborhood Dx.

After a certain period of treatment, a new model and a new
profile for this person, based on a new input vector x' can be
derived, using the same invention, and the previous treatment
modified accordingly, until this person is cured.

Aspects of the described technology have been described
by way of examples only and it should be appreciated that
modifications and additions may be made thereto without
departing from the scope of the appended claims.

Example 5

Personalised Modelling for Risk of Disease
Evaluation, Diagnosis, Treatment and Drug Design
Using DNA SNP Sequence Data

An individual DNA sequence, that can be obtained from
any cell ofaliving organism (e.g. human, animal, plant, virus)
carries not only the inherited traits or risk of diseases through
generations, but also shows the current state of the organism
in terms of accumulated mutations during life time. This
information can be used to predict the unique personalized
trait of the organism, risk of disease or diagnosis, at the time
of the DNA sequencing subject to sufficient data samples of
measured DNA and their traits. Collecting individual DNA
sequence data and measuring Single Nucleotide Polymor-
phisms (SNP) (eg A to A, A to G, G to G) for an individual and
a large population of individuals becomes easy and cheap
with the advancement of the microarray technologies.

Such data has been collected and published as part of
Genome-wide Association Scan projects (GWAS). Results of
374 such projects for over 100 human traits and diseases are
published in (Hindorff I A, Sethupathy P, Junkins H A,
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Ramos E M, Mehta J P, Collins F S, and Manolio T A.
Potential etiologic and functional implications of genome-
wide association loci for human diseases and traits. Proc Natl
Acad Sci USA, May 27, 2009) and the collected data is avail-
able on the Internet. Such GWAS project is also the WTCCC
project in the UK, results published in Nature, 2007 (The
Welcome Trust Case Control Consortium, Genome-wide
association study of 14,000 cases of seven common diseases
and 3,000 shared controls, Nature, vol. 447, 2007, 661-670)
and obtained data available from the Internet. The publica-
tions so far report on the statistically derived population risk
of disease (trait) for single SNPs signals (see also: Lea, Rod,
Donia Macartney-Coxson, David Hall, Bushra Nasir and Lyn
Griffiths, A Novel Bioinformatic Approach for Identifying
Genomic Signatures of Disease Risk, ESR Ltd Report, Por-
irua, New Zealand, 2009). The challenge is to use the avail-
able SNP data to derive a personalized risk and SNP (gene)
signature for a new individual, along with possible treatment
and drug design, that take into account the specific interaction
and combination of several SNPs specific for this person.

We claim that the proposed in the patent specification
method is applicable to SNP data (e.g. wtcce.org) to obtain an
individual SNP signature for every new person and predict the
individual risk of this person for the following diseases
included in the UK WTCCC study, as illustrated later in this
Example:

Bipolar disorder;

Coronary artery disease;

Crohn’s disease;

Hypertension;

Rheumatoid arthritis

Type 1 Diabetes;

Type 2 Diabetes;

Tuberculosis;

Breast cancer;

Multiple sclerosis;

Ankylosing spondylitis;

Autoimmune thyroid disease as well as to predict the indi-
vidual risk or diagnosis for other diseases based on data
collected and published elsewhere including brain
injury and brain degenerative diseases, such as:

Stroke;

Alzheimer disease;

Mental retardation;

Schizophrenia

and many more

Here we describe how the proposed methodology can be
applied to SNP data, exemplified on the WTCCC data for any
of the diseases above. We take as a concrete example the
Crohn’s disease.

First, based on the SNPs data of diseased and control
persons, unique SNPs for the diseased when compared to the
controls are statistically identified using the method from
(Nature, 2007)). An example of identified 9 SNP association
signals for the Crohn’s disease in the WTCCC project, across
all chromosomes, is given in FIG. 6. Each SNP association
signal (area from the DNA) may contain several SNPs and is
part of a gene that could be a possible target for a treatment or
drug design.

The methodology of the described technology may applied
here on a data set D of samples (both controls and diseased)
that contain selected SNPs to create a personalized model for
a new person, represented as input vector X containing the
same SNPs, for the prognosis of the risk of this person of the
disease (or a trait under consideration) and to create a SNP
and gene signature of the person for a possible treatment or a
drug design. The following elements are realized iteratively
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(as also shown in the block diagram of FIG. 7 which is derived
from the general block diagram in FIG. 1).

According to another aspect of the described technology
method of creating an optimised personalized model of a
person’s medical condition based on an analysis of selected
SNPs is provided comprising:

(a) determining a number of SNP variables and selecting a

subset of SNPs variables Vx from a dataset D;

(b) determining a number Kx of nearest neighbors of SNP
vectors to x from D

(c) selecting a subset Dx from the set D of Kx neighboring
samples to x according to the set of SNP variables Vx;

(d) ranking the SNP variables from Vx according to their
discriminative power in Dx, e.g. to discriminate controls
versus diseased in Dx;

(e) creating a personalised prognostic model Mx for the
risk of disease of person x (e.g. a linear regression, a
neural network or else) with parameters Px, using the
selected variables Vx and nearest samples in Dx.

(D) testing the predicted by Mx risk for every sample from
Dx and compare it to the known risk calculating the
average local error Ax across all samples from Dx.

(g) storing all parameters and values from the above ele-
ments (a) to (f) as results of the current iteration.

(h) repeating elements (a) to (g) until the best local accu-
racy is achieved.

According to another aspect of the described technology a
method of calculating the risk of disease from an optimized
SNP model of a subject derived substantially as described
above is provided, the method comprising:

(1) using the model Mx derived from the above iterations to

calculate the risk y for the sample x.

(ii) creating a SNP profile of x and the corresponding gene
profile by mapping the SNPs from the final set Vx into
genes as illustrated in FIG. 6.

(iii) creating a scenario for treatment/drug design that
includes a set of

SNPs/genes and the needed changes for the person x to
match in the future the average profile of the control samples
from Dx.

The data sub-sets and parameters Vx, Wx, Kx, Dx, Mx, Px
are selected and optimised together through several iterations
of'the procedure above as described in the method, so that the
best accuracy of the personalised prognosis, or close to it is
achieved as a target/objective function. The method allows
for a dynamic adaptation, monitoring and improvement of the
personalised model should new data about the person or the
population become available over a time period. For example,
in some years time aging and environmental factors (radia-
tion, nutrition, smoking, drugs, etc) might have made impact
on the person’s DNA and new risk evaluation would be
needed when possibly new known samples will be added to
the data set D.

To illustrate the use of the proposed methodology on SNP
data for disease risk prognosis, we will use a subset of 1048
samples from the WTCCC data repository related to both
control subjects (488, no disease) and Crohn’s diseased sub-
jects (560) for which already 53 SNPs are identified as sta-
tistically significant for the whole population at a pre-pro-
cessing stage. The data was kindly provided by Dr Rod Lea
from the Environmental Science Research Ltd, CRI, New
Zealand.

We will show here the development of a personalised
model for the prediction of Chron’s disease of a new subject
(input vector x).

After several iterations of a genetic algorithm (GA) opti-
misation procedure to optimise together features, number of
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nearest samples and model parameters, the following results
were obtained as the best results for the sample x:

(a) The number of SNPs Vx that best predicts the outcome
for x is 10 and the SNP features are the following ones
(out of 53): 40, 10, 19, 42, 21, 34, 45, 49, 30, 22.

(b) The optimal number Kx of nearest samples is 67 (out of
1048 total number of samples).

(c) The nearest samples selected are #: 647 742 458 255
258 513 697 245 486 728 823 920 1035 24 140 144 394
5816127107759079109161027 131 273336 585 635
646 672 699 763 812 816 819 849 958 1013 56 165 210
226 246 266 272 557 575576 671 724 735752754 770
800 871 884 934 952 966 981 1032 44 52 61

(d) A weight vector for the Vx variables is obtained.

(e) A WKNN model is used for classification with an
optimised parameter—a class decision threshold of
0.19.

(f) The local accuracy is evaluated as 85% correct.

(g) The kNN model is used to calculate the output risk for
x as y=0.57. As this sample was with a known outcome
to be 1 (diseased) the peronsalised model correctly pre-
dicted this outcome (using an optimised threshold of
0.19).

(h) A personalised SNP signature for x is developed based
on the 22 control samples in the neighbourhood of 97
samples and 45 diseased. The local probability of each
of the three SNPs denoted as 0, 1 and 2 in each of the
controls and diseased samples of the neighbourhood of x
are the following:

Control (22) Diseased (45) Actual Value of
SNPID 0 1 2 0 1 2 the SNP in x
40 0.55 045 0.00 038 0.8 0.04 1
10 0.64 036 0.00 076 024 0.00 0
19 0.77 023 0.00 067 022 0.11 0
42 0.73 0.18 0.09 071 0.24  0.04 0
21 0.36 050 0.14 031 0.58 0.11 1
34 0.64 036 0.00 080 0.20 0.00 0
45 0.32 0.68 0.00 036 051 0.13 1
49 0.59 041 0.00 058 042 0.00 1
30 0.09 050 041 0.16  0.80 0.24 2
22 0.50 050 0.00 056 044  0.00 0

It is seen from the above table that SNP features #40, 10
and 34 are prominent in the diseased group versus the control
group in the neighbourhood ofx. These SNPs may be mapped
into genes and then explored as possible drug or treatment
targets.

Aspects of the described technology have been described
by way of example only and it should be appreciated that
modifications and additions may be made thereto without
departing from the scope thereof.
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What I claim is:

1. A method of decreasing a risk of disease in a person x,

comprising:

(A) obtaining a single nucleotide polymorphism (SNP)
transductive model Mx suitable for use in data analysis,
wherein the risk of disease specific to the person x is
represented as input vector X, which comprises a plural-
ity of variable features in relation to the risk of disease
for which there is a global dataset D of samples also
having the same variable features relating to the risk of
disease as input vector X, and for which an outcome is
known,

(B) optimizing the transductive model by
a) determining what number and a subset Vx of variable

features of input vector x will be used in assessing an
outcome for the input vector x;

b) determining what number Kx of samples from within
the global data set D will form a neighborhood about
input vector x;

c) selecting suitable Kx samples from the global data set
which have the variable features that most closely
accord to the variable features of the person x to form
the neighborhood Dx;

d) ranking the Vx variable features within the neighbor-
hood Dx in order of importance to the outcome and
obtaining a weight vector Wx for all variable features
VX,

e) creating a prognostic transductive model Mx for each
input vector X, having a set of model parameters Px
and the other parameters Vx and Kx from elements
a)-d);

f) testing an accuracy of the model Mx for each sample
from Dx by a method selected from the group con-
sisting of
(1) calculating Wx as normalized SNR (Signal-to-

Noise Ratio) coefficients and sorting the variables
in descending order: V1, V2, . . . | Vv, where:
w,>=w,>= ... >=w,, calculated as follows:

wiabs(M,c1e Lo)_py(olass
(Std 15Dy St sy,

2,>c)) %

(i1) testing for a plurality of variables Vx a plurality of
possible combinations of values of their weights
Wx tested through a search to increase the overall
accuracy of a model built on the data Dx;

(iii) applying a genetic statistical analysis procedure,
if the number of variables prevents using method
(ii) above;

(iv) applying a quantum inspired evolutionary statis-
tical analysis technique, to select the optimal vari-
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able set Vx for every new input vector x and to
weigh the variables through a probability wave
function;

g) storing both the accuracy and the set of model param-
eters;

h) repeating elements a) and/or b) while applying an
optimization procedure to optimize Vx and/or Kx, to
determine their optimal values, before repeating ele-
ments ¢)-h) until the accuracy is maximized, wherein
anumber and a subset Vx of variable features of input
vector X, and a number Kx of samples from within the
global data set D that form a neighborhood about
input vector X are determined anew each time ele-
ments a) and b) are repeated while applying an opti-
mization procedure to optimize Vx and/or Kx;

(C) creating a SNP profile of sample x from patientx and a
corresponding gene profile by mapping the SNPs from a
final set VX into genes;

(D) determining the risk of disease specific to the patient x
using the optimized transductive model Mx by:

() forming a vector: Fx={Vx,Wx,Kx,Dx,Mx,Px,t},
where the variable t represents the time of the model
MX creation;

(II) calculating the weighted distance D(Fx,Fd) as an
aggregated indication of how much a person’s profile
should change to reach an average desired profile Fd:

D(Fx,F d)ZEIZI,vabS(le_ Via)ws

(IIT) designing a vector of required variable changes,
defined as:

deltaFx,d=(deltaVy ;) o, 11, 2 follows: (20)

deltaV, ;= Vi~V with an importance of: w; 21

(E) moditfying variable features Vx in the patient x to be
closer to Kx values associated with an improved out-
come relative to a prognostic outcome y determined for
the patient X so as to improve the prognostic outcome of
the patient x;

(F) repeating elements a) through h) to determine an
improved prognostic outcome using re-optimized trans-
ductive model Mx; and

(G) creating a scenario for treatment/drug design that
includes a set of SNPs/genes and required changes for
the person x to match in future, average profiles of con-
trol samples from Dx in order to decrease the risk of
disease.

2. The method as claimed in claim 1, wherein optimizing
the transductive model further comprises profiling input vec-
tor x and comparing important variable features against
important variable features associated with a desired outcome
to provide for, or assist with, development of scenarios for
improvement of the outcome for input vector x.

3. The method as claimed in claim 1, wherein the prognos-
tic transductive model Mx is a personalized model.

4. The method as claimed in claim 3, wherein the person-
alized model is a unique personalized model.

5. The method as claimed in claim 1, wherein a known
outcome is associated with each sample in the global dataset
and determined neighborhood.

6. The method as claimed in claim 1, wherein the global
dataset has samples having one of at least two different out-
comes, wherein a particular outcome for each sample is
known.

7. The method as claimed in claim 1, wherein new data is
compared with accumulated existing data samples for which
a future outcome is known for each sample.
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8. The method as claimed in claim 1, wherein one or more
variable features of input vector x are selected as incapable of
being altered for step (D)(III).

9. The method as claimed in claim 1, wherein step (E)
comprises administration of a drug.

10. A computer system which includes: a hardware com-
prising, a processor and associated memory for performing
the method of claim 1.

11. A non-transitory computer readable medium which
contains a program executed by a processor for performing a
method, the method comprising:

(A) obtaining a single nucleotide polymorphism (SNP)
transductive model Mx suitable for use in data analysis,
wherein the risk of disease specific to the person x is
represented as input vector X, which comprises a plural-
ity of variable features in relation to the risk of disease
for which there is a global dataset D of samples also
having the same variable features relating to the risk of
disease as input vector X, and for which an outcome is
known,

(B) optimizing the transductive model by:

a) determining what number and a subset Vx of variable
features of input vector x will be used in assessing an
outcome for the input vector x;

b) determining what number Kx of samples from within
the global data set D will form a neighborhood about
input vector x;

¢) selecting suitable Kx samples from the global data set
which have the variable features that most closely
accord to the variable features of the person x to form the
neighborhood Dx;

d) ranking the Vx variable features within the neighbor-
hood Dx in order of importance to the outcome and
obtaining a weight vector Wx for all variable features
VX,

e) creating a prognostic transductive model Mx for each
input vector x, having a set of model parameters Px and
the other parameters Vx and Kx from elements a)-d);

f) testing an accuracy of the model Mx for each sample
from Dx by a method selected from the group consisting
of:

(1) calculating Wx as normalized SNR (Signal-to-Noise
Ratio) coefficients and sorting the variables in descend-
ingorder: V1,V2, ..., Vv, where: wl>=w2>, ... >=wy,
calculated as follows:

w —abs(M1 s L)_p g1 (elass
(Std1(€1ass ) Sy (elass 2));

2,>c)) %

(i1) testing for a plurality of variables Vx a plurality of
possible combinations of values of their weights Wx
tested through a search to increase the overall accuracy
of a model built on the data Dx;

(ii1) applying a genetic statistical analysis procedure, ifthe
number of variables prevents using method (ii) above;

(iv) applying a quantum inspired evolutionary statistical
analysis technique, to select the optimal variable set Vx
for every new input vector x and to weigh the variables
through a probability wave function;

g) storing both the accuracy and the set of model param-
eters;

h) repeating elements a) and/or b) while applying an opti-
mization procedure to optimize Vx and Kx, to determine
their optimal values, before repeating elements c)-h)
until the accuracy is maximized, wherein a number and
a subset Vx of variable features of input vector x, and a
number Kx of samples from within the global data set D
that form a neighborhood about input vector x are deter-
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mined anew each time elements a) and b) are repeated
while applying an optimization procedure to optimize
Vx or Kx;

(C) creating a SNP profile of sample x from personx and a
corresponding gene profile by mapping the SNPs from a
final set VX into genes;

(D) determining a prognostic outcome y specific to the
person x using the optimized transductive model Mx by:

(D) forming a vector: Fx={Vx,Wx,Kx,Dx,Mx,Px,t}, where
the variable t represents the time of the model Mx cre-
ation;

(II) calculating the weighted distance D(Fx,Fd) as an
aggregated indication of how much a person’s profile
should change to reach an average desired profile Fd by
using the following:

D(Fx,F d)ZEIZI,vabS(le_ Viarws
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(III) designing a vector of required variable changes,
defined as: deltaF'x,d=(deltaV, ), for I=1, v as follows:
deltaV,, ~V,;~V,; with an importance of: W1;

(E) modifying variable features Vx in the person x to be
closer to Kx values associated with an improved out-
come relative to the prognostic outcome y determined
for the person X so as to improve the prognostic outcome
of the person x;

(F) repeating elements a) through h) to determine an
improved prognostic outcome using re-optimized trans-
ductive model Mx; and

(G) creating a scenario for treatment/drug design that
includes a set of SNPs/genes and required changes for
the person x to match in future, average profiles of con-
trol samples from Dx in order to decrease the risk of
disease.



